Online wavelet-based density estimation for non-stationary streaming data

نویسندگان

  • Edgar S. García-Treviño
  • Javier A. Barria
چکیده

There has been an important emergence of applications in which data arrives in an online time-varying fashion (e.g. computer network traffic, sensor data, web searches, ATM transactions) and it is not feasible to exchange or to store all the arriving data in traditional database systems to operate on it. For this kind of applications, as it is for traditional static database schemes, density estimation is a fundamental block for data analysis. A novel online approach for probability density estimation based on wavelet bases suitable for applications involving rapidly changing streaming data is presented. The proposed approach is based on a recursive formulation of the wavelet-based orthogonal estimator using a slidingwindow and includes an optimised procedure for reevaluating only relevant scaling and wavelet functions each time new data items arrive. The algorithm is tested and compared using both simulated and real world data. © 2011 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some New Methods for Prediction of Time Series by Wavelets

Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for a Discrete-Time Stochastic Process: Lp-Losses

We propose a method of estimation of the derivatives of probability density based on wavelets methods for a sequence of random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for such estimators. We suppose that the process is strongly mixing and we show that the rate of convergence essentially depends on the behavior of a special quad...

متن کامل

Wavelet Based Estimation of the Derivatives of a Density for m-Dependent Random Variables

Here, we propose a method of estimation of the derivatives of probability density based wavelets methods for a sequence of m−dependent random variables with a common one-dimensional probability density function and obtain an upper bound on Lp-losses for the such estimators.

متن کامل

Linear Wavelet-Based Estimation for Derivative of a Density under Random Censorship

In this paper we consider estimation of the derivative of a density based on wavelets methods using randomly right censored data. We extend the results regarding the asymptotic convergence rates due to Prakasa Rao (1996) and Chaubey et al. (2008) under random censorship model. Our treatment is facilitated by results of Stute (1995) and Li (2003) that enable us in demonstrating that the same con...

متن کامل

Time-varying spectral analysis in neurophysiological time series using Hilbert wavelet pairs

An analytic wavelet transform, based on Hilbert wavelet pairs, is applied to bivariate time-varying spectral estimation for neurophysiological time series. Under the assumption of an underlying block stationary process, both single-trial and ensemble studies are amenable to this method. A bootstrap procedure, which samples with replacement blocks centered around the events of interest, is propo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 56  شماره 

صفحات  -

تاریخ انتشار 2012